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Energy t r ans fe r  by radiat ion in a l ayer  of lumpy mater ia l  is examined.  A formula  is der ived 
for  the effective coefficient of heat conduction of the layer  for  radiat ion heat t r ans f e r .  

Radiation plays a large  par t  in energy t r ans fe r  in a lumpy layer  at high t empera tu re s .  The paper  [1] 
in which the scheme proposed for  the solution in [2] by considering two opposing radiant energy fluxes is 
used, is devoted to this question. 

The sys tem of equations used is hence analogous to the sys tem of radiant  energy t r ans fe r  different ial  
equations in a l ayer  on the basis  of a differential  difference method of approximation,  but it is writ ten in ap-  
plication to a finite quantity of separa te  in te r layers  and the equations take on the fo rm  of ord inary  a lgebraic  
equations in conformity  with this.  

In our opinion, the use of such a method mer i t s  attention; however,  the reasoning in [1, 2] requ i res  
co r rec t ion .  

An energy balance equation can be wri t ten for  each separa te  layer  in addition to the t r ans fe r  equation. 
These  equations should be solved jointly with the t r ans fe r  equations. This has not been done in the papers  
mentioned. 

Let  us imagine the layer  to consist  of a cer ta in  number  of separa te  in te r layers  ( l ayers ) .  Let  I de-  
note the upward di rec ted  radiant  f luxes,  and K those going downward (Fig. 1). Let us consider  the coeff i -  
cient of heat conduction of the mater ia l  to be large ,  and hence, each separa te  layer  has the same t e m p e r a -  
ture  everywhere .  Let us assume the radiat ion cha rac te r i s t i c s  of all the l ayers  to be identical  and indepen- 
dent of the flux direct ion.  

The radiant  fluxes (I or K) incident on an individual l ayer  a re  par t ia l ly  absorbed on its sur face ,  p a r -  
t ia l ly pass  through the layer  without coming into contact with the layer  mater ia l ,  and par t ia l ly  a re  re f lec ted .  
Pa r t  of the re f lec ted  energy emerges  at once outwardly in the direct ion of, or opposite to the initial radiant 
flux. Another par t  undergoes multiple ref lect ions  during which par t  of the energy is absorbed and par t  
leaves the l aye r .  

Let the f rac t ion of a l l  the radiat ion absorbed in each individual layer  f rom the incident radiant flux be 
called the absorpt ivi ty  (ac). Let  the f ract ion of the re f lec ted  energy emerging f rom the layer  opposite to the 
incident radiant  flux be the ref lec t iv i ty  (rc). Let the f rac t ion of the energy emerging in the direct ion of the 
incident flux be the t r ansmiss iv i ty  (de) of the l ayer .  Evidently 

a e + r  e-Pd e =  1. (1) 

The quantity d c is compr ised  of the energy passing through the layer  without touching the layer  ma te -  
r ia l  (dp.th), and the energy t ransmi t ted  af te r  acts of ref lect ion in the layer  (do). It is d i rec t ly  evident that 

d c = dp. th " d o .  (2) 

Let us fo rm the equation of radiant energy t r ans fe r  for  the sys tem pic tured in Fig.  1: 

11 ~ = Ih_ldc _~ Khrc _~_ ejroT4_1, (3) 

Kh = K~+ldc -}- lhrc q- eccro~, (4) 

where e c is the visible emiss iv i ty  of an individual l aye r .  
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Fig .1 .  Diagram of the radiation 
t r a n s f e r  p roces s .  

Fig.  2. Model of the p roces s  ac -  
cording to [1]. A a re  pores .  

Let  us wri te  the equation of energy balance for  the layer  k 

Ikao + Kk+lac = 2ec%T4k (5) 

If the sys t em is in thermodynamic equil ibrium at the t empera tu re  Tk,  then the radiant fluxes I k and 
Kk+ t will equal a0T~. Hence,  we obtain 

ac = 8c.  (6) 

We consider  this equality valid even in the absence of thermodynamic equil ibrium. 

Writ ten in place of e c and r c in {3) and (4) in [1, 2] a re  ~(1-dc)  and (1-  e) (1-  dc) , respec t ive ly ,  where 
e is the emiss iv i ty  of the layer  mater ia l .  Such a replacement  is valid only if there  is no energy ref lec t ion 
within the l aye r ,  i .e . ,  for  a l ayer  which represen t s  infinitely thin holey pla tes .  In the other  cases  it can be 
cons idered  only as approximate  for  which an additional foundation is requi red .  

The magnitude of the resul tant  radiant heat exchange through the layer  is defined in [1] as the dif-  
f e rence  between the radiant  fluxes I and K by means of (2) in [1]. The radiant fluxes Ik_ l and Kk+ 1 a r e h e n c e  
replaced  by the radiat ion of imaginary cylindrical  po res .  The scheme of the computation used in the paper  
cor responds  to the model shown in Fig.  2. Such a model is ar t i f ic ia l  and does not cor respond to the actual 
p ic ture  of the radiant  energy t r ans fe r  phenomenon in d isperse  sys t ems .  The radiant  fluxes Ik_ 1 and Kk+ 1 
a re  genera ted  as a resu l t  of the interact ion between the other  radiant fluxes and the radiat ion of the individ- 
ual l a ye r s .  Hence, they cannot be considered as independent rad ia to rs ,  but should be found on the basis  of 
the balance equation (5). 

Let us r ewr i t e  (3) by replacing k by k + 1, af ter  which we add it to (4). Let  us rep lace  a0T~ in con-  
fo rmi ty  with (5). We hence obtain 

lk - -  Kk =I~+1 - -  K~,+x=%. (7) 

This  equation shows that the resul tant  heat exchange does not va ry  over  the thickness of the l ayer ,  
which is as  it should be s ince there  a r e  no energy sources  within the l aye r .  

Let  Eincident k denote the sum of the fluxes I k + Kk+ 1 incident on the layers  k. It de te rmines  its t e m -  
pe ra tu re .  Let us de te rmine  how this quantity var ies  f r o m  layer  to l aye r .  To do this,  we eliminate the t e m -  
pe ra tu re  f rom (3) and (4) by using (5). We obtain 

The dif ference between the quantities Eincident k in two adjacent l ayers  is 

AEincident k =  (Ik + Kk+t) - -  ( /k- t  -~- K~) = 260 (T~- -  T~k--l). (9) 

Let us de te rmine  Kk+ t and Ik_ t f rom (8) and let  us substitute them into (9). We obtain 

1 + r o --d. (10) 
AEincident k = - -  2qp I - -  r e + d e " 
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Let  us examine  a s y s t e m  cons i s t ing  of two abso lu te ly  b lack  s u r f a c e s  A and B s e p a r a t e d  by n l a y e r s  
(Fig.  1). A c c o r d i n g  to (7), we have 

and acco rd ing  to (10) 

qp = 11 - -  K1 = In+l - -  K,~+,, (11) 

The  f luxes a r e  

I .  + K~+I = 11 + K~ - -  2qp (n - -  1) ' + re - -  d~ 
1 - -  r~ + d e 

l 1 = %T~, K~+ x = % ~ .  

(12) 

(13) 

A c c o r d i n g  to (8) we m a y  wr i te  

Kx=K=(de+-~) +ll(re+-a2), 
(14) 

Solving (11)- (14), we find 

whe re  

l - - r  e + d  c ( T ~ - -  T 4 )  gp. thO'o(T 4 T 4) ,  
qP = 2 + ( n - -  I)(1 + r r  % - - -  

( is)  

1 - -  re + dc (16) 
ep. th-- 2 + ( r t -  1)(1 +re--de)" 

In  the p a r t i c u l a r  c a s e  of n = 0 we take d c = 1, r e = 0 and (15) d e t e r m i n e s  the heat  exchange  be tween  
two abso lu te ly  b lack  p l a t e s .  

A c c o r d i n g  to the def ini t ion of Xef f 

qp = ~ (TA - -  T B ). (17) 
L 

F r o m  (15) and (17) 

~'eff hnep. %(T~- -T~)  = h~ (~o(V~--T~) 
= th TAA = TB TA - -  TB 

( is)  

where  
= nep. th' (19) 

F o r  a s m a l l  t e m p e r a t u r e  drop in the l aye r  

)~eff ~ 4h~% Ta. (20) 

When the quanti ty of l a y e r s  is l a rge ,  then 

1 - -  r c J r  d c 1 + d p .  t h - -  A 
~ (21) 

1 4 -  r e - -  d c 1 - -  d p .  th-[- A ' 

where  A = r c - d  0 def ines  the d i f fe rence  be tween the r e f l e c t ed  rad ia t ion  in the d i r ec t ion  opposi te  to the inc i -  
dent flux and in the flux d i r ec t ion .  

The  quant i t ies  r c and d c depend on the g e o m e t r i c  shape  of the l a y e r ,  the magni tude  of the r e f l e c t i v i t y  
of the m a t e r i a l  and the s c a t t e r i n g  ind ica t r ix .  

It is seen  f r o m  (10) that  if the heat t r a n s f e r  is a c c o m p l i s h e d  only by rad ia t ion  and the quant i t ies  h, re ,  
and d c do not v a r y  over  the l a y e r  th ickness ,  then the magni tude  of the t e m p e r a t u r e  to the four th  power  will  
be a l i nea r  funct ion of the d i s t ance  f r o m  the l a y e r  bounda ry .  

The  quant i ty  dp.th depends  only on the g e o m e t r i c  shape  of the l aye r ,  A depends on the magni tude  of 
the r e f l ec t iv i t y  and the r e f l ec t ion  ind ica t r ix .  When the l a y e r  r e f l ec t iv i ty  is ident ica l  on both s ides  (r c = do) , 
the ef fec t ive  coeff ic ient  of heat  conduct ion is independent of the m a t e r i a l  r e f l e c t i v i t y o r  its e m i s s i v i t y  and 
depends only on the g e o m e t r i c  c h a r a c t e r i s t i c s  of the l a y e r .  
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Fig ,  1.- ])ependenee of the 
quantity ~ on the ra t io  lid 
and the l ayer  poros i ty  p.  
Solid lines) r = O; dashes)  
r = 0.5: 1, 2) p = 0.4; 3, 4) 
0.2; 5, 6) 0. 

Let us consider  the s imples t  case  of radiant  heat exchange in a 
l aye r  compr i sed  of meta l l ic  pe r fo ra t ed  pla tes  with a smal l  rat io  between 
the height of the hole and its d i ame te r  (l/d).  

Let f0 denote the f rac t ion  of the a r e a  occupied by the holes .  If the 
angular  coefficient f r o m  one base  of the hole to the other  is denoted by 
9, then 

dp. th = ~o % (22) 

where  

The quantity 

i 

(23) 

A = (1 - -  f0) r -}- f0 A', (24) 

where  A' is the di f ference between the flux magnitudes ref lec ted  f r o m  the 
side sur face  of the hole opposite to and along the incident flux divided by 
the magnitude of the flux t r ansmi t t ed  by the base .  

Using (22) and (24), we obtain by means of (21) 

= l + i o ~ - - ( 1 - - f o ) r - - f . A '  

1 - -  foq> ~- (1 --/Co) r +/~o A' 
(25) 

Let us cons ider  the gaps between the p la tes  to be quite smal l  as  compared  with the plate  th ickness ;  
then the quantity f0 can be taken equal to the layer  poros i ty  p. Let us a lso  a s s u m e  that the ref lec t ion f r o m  
the side su r f ace  of the hole is i s . t r op i c ;  then A, = 0. We obtain 

_-- 1 + pep - -  (1 - -  p) r (26) 
1--pq~ + ( l - - p ) r  " 

A dependence of the quantity ~ and the ra t io  lid and the l ayer  poros i ty  is given in Fig.  3 according to 
(26) for  the c a s e s  r = 0.5 and r = 0. It is seen f r o m  the f igure that an inc rease  in poros i ty  magnif ies  
s t rongly .  This  is explained by the fact that the po res  in the layer  a r e  continuous holes t ransmi t t ing  radiant  
energy in the ca se  under considera t ion .  

It is v e r y  difficult to de te rmine  the quantit ies ac,  r c ,  and d c by calculat ions for  more  complex l ayer  
conf igurat ions .  Light of heat modeling can be used to de te rmine  them.  

I , K  

ac, r c, d c 
dp. th '  do 
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N O T A T I O N  

a r e  the opposing radiant  f luxes,  W/m2; 
a r e  the l aye r  absorpt iv i ty ,  re f lec t iv i ty  and t r a n s m i s s i v i t y ;  
a r e  the t r a n s m i s s i v i t y  for  radiant  energy pass ing  d i rec t ly  through the l ayer  and a f te r  r e f l ec -  
tion f r o m  the l ayer  mate r ia l ;  
m the emiss iv i ty ;  
ts the m a t e r i a l  re f lec t iv i ty ; .  
is the l a y e r  th ickness ,  m; 
is the d is tance  between separa te  i n t e r l aye r s ,  m; 
m the t e m p e r a t u r e ,  ~ ;  
Is the resul tan t  radiant  flux in the l aye r ,  W/m2; 
~s the effect ive coefficient of radiat ion heat conduction of the l aye r ,  W / m .  deg; 
m the angular  coefficient f rom one base  of the hole to the other;  
m the magnitude of the hole a r e a  in the plate ,  m2/m2; 
ts the poros i ty ;  
~s the magnitude of incident radiant  fluxes on the plate k. 

1. 
2. 
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