ENERGY TRANSFER BY RADIATION IN A LUMPY LAYER

A, S, Nevskii and Yu, M, Abzalov UDC 536.3

Energy transfer by radiation in a layer of lumpy material is examined, A formula is derived
for the effective coefficient of heat conduction of the layer for radiation heat transfer,

Radiation plays a large part in energy transfer in a lumpy layer at high temperatures, The paper [1]
in which the scheme proposed for the solution in [2] by considering two opposing radiant energy fluxes is
used, is devoted to this question,

The system of equations used is hence analogous to the system of radiant energy transfer differential
equations in a layer on the basis of a differential difference method of approximation, but it is written in ap-
plication to a finite quantity of separate interlayers and the equations take on the form of ordinary algebraic
equations in conformity with this,

In our opinion, the use of such a method merits attention; however, the reasoning in [1, 2] requires
correction,

An energy balance equation can be written for each separate layer in addition to the transfer equation,
These equations should be solved jointly with the trangfer equations. This has not been done in the papers
mentioned,

Let us imagine the layer to consist of a certain number of separate interlayers (layers), LetI de-
note the upward directed radiant fluxes, and K those going downward (Fig.1)., Let us consider the coeffi-
cient of heat conduction of the material to be large, and hence, each separate layer has the same tempera-
ture everywhere, Let us agssume the radiation characteristics of all the layers to be identical and indepen-
dent of the flux direction,

The radiant fluxes (I or K) incident on an individual layer are partially absorbed on its surface, par-
tially pass through the layer without coming into contact with the layer material, and partially are reflected.
Part of the reflected energy emerges at once outwardly in the direction of, or opposite to the initial radiant
flux, Another part undergoes multiple reflections during which part of the energy is absorbed and part
leaves the layer,

Let the fraction of all the radiation absorbed in each individual layer from the incident radiant flux be
called the absorptivity (a;), Let the fraction of the reflected energy emerging from the layer opposite to the
incident radiant flux be the reflectivity (ro). Let the fraction of the energy emerging in the direction of the
incident flux be the transmissivity (d,) of the layer, Evidently

Gy +r,+dy =1, (1

The quantity d, is comprised of the energy passing through the layer without touching the layer mate-
rial (dp.th)’ and the energy transmitted after acts of reflection in the layer (dg). It is directly evident that

do=d pt dy. (2)

Let us form the equation of radiant energy transfer for the system pictured in Fig,1:
Iy =1y _\do + Kyro -+ scGoTé—h ®)
K, = Ky dy + 1rs + £,6,Th “)

where €, is the visible emissivity of an individual layer,
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Fig.,1, Diagram of the radiation Fig,2, Model of the processac-
transfer process., cording to [1], A are pores,

Let us write the equation of energy balance for the layer k
La,+ K, .0, = ZECO'OT"?;. (5)

If the system is in thermodynamic equilibrium at the temperature Ty, then the radiant fluxes I and
Ky will equal oI}, Hence, we obtain

6

a. = g,
We consider this equality valid even in the absence of thermodynamic equilibrium,

Written in place of €, and r in (3) and (4) in [1, 2] are €(1—d;) and (1—¢€)(1—d,), respectively, where
€ is the emissivity of the layer material. Such a replacement is valid only if there is no energy reflection
within the layer, i.e,, for a layer which represents infinitely thin holey plates, In the other cases it can be
considered only as approximate for which an additional foundation is required.

The magnitude of the resultant radiant heat exchange through the layer is defined in [1] as the dif-
ference between the radiant fluxes I and K by means of (2) in [1]. The radiant fluxes Ix_; and Ky arehence
replaced by the radiation of imaginary cylindrical pores, The scheme of the computation used in the paper
corresponds to the model shown in Fig,2. Such a model is artificial and does not correspond to the actual
picture of the radiant energy transfer phenomenon in disperse systems. The radiant fluxes Ij.; and Kiy
are generated as a result of the interaction between the other radiant fluxes and the radiation of the individ-
ual layers., Hence, they cannot be considered as independent radiators, but should be found on the basis of
the balance equation (5).

Let us rewrite (3) by replacing k by k + 1, after which we add it to (4). Let us replace aon{ in con-
formity with (5). We hence obtain

I, —K, = 1k+1_Kk;(-1=qp' {7)
This equation shows that the resultant heat exchange does not vary over the thickness of the layer,
which is as it should be since there are no energy sources within the layer,

Let Ejncident k denote the sum of the fluxes I, + Ky 4 incident on the layers k, It determines its tem-
perature, Let us determine how this quantity varies from layer to layer. To do this, we eliminate the tem-
perature from (3) and (4) by using (5). We obtain

1k=lh—1(dc+ &)+Kk(fc+ %c")’
2 . ®
Kk=Kh+1 (dc+ 229') +1k(rc =+ i;)

The difference between the quantities Ejysident k in two adjacent layers is
AEincidentk= (I + Ky,) — sy + Kp) = 20, (TE— Th_y). ©)
Let us determine K, and Iy from (8) and let us substitute them into (9). We obtain

1 —l—rc —dc (10)

AEjncidentk = — 2qp l——;ﬂ .
e (
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Let us examine a system consisting of two absolutely black surfaces A and B separated by n layers
(Fig.1), According to (7), we have

qp:ll_K1:]n+1—Kn+1v (11)
and according to (10)
—d
I+ Ky, =1, +K,—2, (n— 1) L Te =G (12)
+1 1 2 qp( )l—fc +dc
The fluxes are
I, =0, Th, Kn,y =0,T5. (13)

According to (8) we may write

K= Ky(do 2 ) 41 (rc+ i)
1 2( 2 1 2 (14)

a a
]n+1:1n (dc'i—?c)‘{‘Kn-u(rc'*_ 2:: )
Solving (11)-(14), we find
_ I —r,+d,
2+ (n— I)(1-+r—d)

% 06 (TA—Th) = ¢, 6o (Ta— Th), (15)
where
e . l—r,+d,
Pt g L (n— 1)1 r—d,)

(16)

In the particular case of n = 0 we take d, = 1, r;, = 0 and (15) determines the heat exchange between
two absolutely black plates.

According to the definition of Aegf

A
g, = Tefi (Ty—Tp). (17)
From (15) and (17)

4 4 4 4
Aegr = hne.. v 90Ta—Th) __ pe 6o (Ta—Ts) , (18)

eff p-th Ta—Tsp : Ta—Tpg

where

E= REp. thr {19)

For a small temperature drop in the layer
’ l’eff == 4h§0’0T3 . (20)

When the gquantity of layers is large, then

1—robdy _ 14+dpm—A 1)

: I+re—d, 1—dy y+4 7

R

where A =r,—dg defines the difference between the reflected radiation in the direction opposite to the inci-
dent flux and in the flux direction,

The quantities r. and d, depend on the geometric shape of the layer, the magnitude of the reflectivity
of the material and the scattering indicatrix.

It is seen from (10) that if the heat transfer is accomplished only by radiation and the quantities h, re,
and d, do not vary over the layer thickness, then the magnitude of the temperature to the fourth power will
be a linear function of the distance from the layer boundary,

The quantity dp th depends only on the geometric shape of the layer, A depends on the magnitude of
the reflectivity and the reflection indicatrix, When the layer reflectivity is identical on both sides (re = dg),
the effective coefficient of heat conduction is independent of the material reflectivity or its emissivity and
depends only on the geometric characteristics of the layer,
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Fig.1l. Dependence of the
quantity £ on the ratio Z/d
and the layer porosity p.
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Let us consider the simplest case of radiant heat exchange in a
layer comprised of metallic perforated plates with a small ratio between
the height of the hole and its diameter (1/d).

Let £; denote the fraction of the area occupied by the holes, If the
angular coefficient from one base of the hole to the other is denoted by
@, then

dp. th= [0 (22)
where
[\? 1 ‘—”_’1_2
=1+ ( y ) y 14 ( y ) . (23)
The quantity .
' A=(l—f)r+T, 4, (24)

where A' is the difference between the flux magnitudes reflected from the
side surface of the hole opposite to and along the incident flux divided by

the magnitude of the flux transmitted by the base,
Using (22) and (24), we obtain by means of (21)

s Lthe—(—fr—fd
1—fo+(1—f)r+foA"

(25)

Let us consider the gaps between the plates to be quite small as compared with the plate thickness;
then the quantity £, can be taken equal to the layer porosity p. Let us also assumeé that the reflection from
the side surface of the hole is isofropic; then A' = 0, We obtain

1 —(l—p)r
g Ltpo (—pr (26)
l—po-+(1—p)r

A dependence of the quantity £ and the ratio I/d and the layer porosity is given in Fig, 8 according to
(26) for the cases r = 0.5 and r = 0, It is seen from the figure that an increase in porosity magnifies ¢
strongly. This is explained by the fact that the pores in the layer are continuous holes transmitting radiant
energy in the case under consideration,

It is very difficult to determine the quantities a, r., and d, by calculations for more complex layer
configurations. Light of heat modeling can be used to determine them,

NOTATION
1, K are the opposing radiant fluxes, W/m?;
ac, o, de are the layer absorptivity, reflectivity and transmissivity;
dp th» o are the transmissivity for radiant energy passing directly through the layer and after reflec-

tion from the layer material;
€ is the emissivity;

rc is the material reflectivity; .

L is the layer thickness, m;

h is the distance between separate interlayers, m;

T is the temperature, K;

ay is the resultant radiant flux in the layer, W/m?;

Aeff is the effective coefficient of radiation heat conduction of the layer, W/m -deg;
7 is the angular coefficient from one base of the hole to the other;

fo is the magnitude of the hole area in the plate, m?/ mz;

P is the porosity;

Eincident k is the magnitude of incident radiant fluxes on the plate k,
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